Graphing Quadratic Equations in Intercept Form

- Another way to graph quadratics!!
- Intercept form of a quadratic is its factored form
 - O Example: Intercept form of $f(x) = x^2 10x + 21$ is f(x) = (x 7)(x 3)

General Rules for Graphing Quadratics of the Form f(x) = a(x - p)(x - q)

- 1) Identify the x-intercepts and plot them
 - x-intercepts for f(x) = a(x p)(x q) are (p, 0) and (q, 0)
- 2) Find the vertex and axis of symmetry
 - The x-coordinate of the vertex is $x = \frac{p+q}{2}$ (think about it it's located halfway between the zeros)
 - Plug in the x-coordinate of the vertex to find its y-coordinate; plot point
 - Axis of symmetry is $x = \frac{p+q}{2}$
- 3) Find the y-intercept; reflect over axis of symmetry
 - Calculate f(0) to find the y-intercept
- 4) Find one or two other points if needed, reflecting over axis of symmetry
- 5) Sketch curve

Example: Graph f(x) = (x - 7)(x - 3)

- 1) Identify the x-intercepts and plot them
 - x-intercepts are (7, 0) and (3, 0)
- 2) Find the vertex and axis of symmetry

•
$$x = \frac{p+q}{2} = 5$$
; $f(5) = -4$

- Axis of symmetry is x = 5
- 3) Find the y-intercept; reflect over axis of symmetry

•
$$y-int = f(0) = 21$$

- 4) Find one or two other points if needed, reflecting over axis of symmetry
- 5) Sketch curve

a) f(x) = (x + 2)(x - 4)

x-intercepts:

vertex: _____

axis of symmetry:_____

y-intercept:_____

other points: _____

c) f(x) = -(x - 2)(x + 4)

x-intercepts: _____

vertex: _____

axis of symmetry:_____

y-intercept:_____

other points:

b) f(x) = 2(x + 3)(x - 1)

x-intercepts: _____

vertex: _____

axis of symmetry:_____

y-intercept:_____

other points: _____

d) $f(x) = -\frac{1}{2}(x + 2)(x - 4)$

x-intercepts:

vertex:

axis of symmetry:_____

y-intercept:_____

other points:

